

JUP Conference, 21-22 June 2001 Hosted by Ohio University Sponsored by NASA & FAA

"Experimental Study of Automation to Support Time-Critical Replanning Decisions"

Kip E. Johnson, MIT Dept. of Aero & Astro Engineering

Advisors Jim Kuchar & Chuck Oman

Sponsored by Office of Naval Research

OVERVIEW:

Problem Identification

Experimental Design

MOTIVATION:

- Decision-Making in Complex Environments
- Replanning Under Time Pressures

PROBLEM UNIQUENESS:

- Automation will Never "See" Everything
- Difficulty in Quantifying a Solution's Value
 - Unstructured Aspects to Problem
 - Multiple Competing Interests & Goals for Solution

Human-Automation Interaction in a Decision-Support Task

Example Applications:

- Military Combat
- Aviation
- Medicine
- Chemical and Energy Production
- Finances
- > Focus on "Real-Time In-Flight Replanning"
 - > Route Replanning

Replanning Task Characteristics

QUESTION?

To What Degree should the Replanner Automation Filter and Integrate Information?

- Take Advantage of Human's Intuition and Ability to Integrate Diverse and Complex Information.
- Replanner Should Have "SMART" Automation Logic Based on Task and Time Pressures.

HYPOTHESIS:

As Time Pressure Decreases, More Integrated Automation Support May Hinder Pilot Performance.

Notional Hypothesis of Interaction Between Information Integration & Task Timescale

RESEARCH GOALS:

- 1. Find a Quantifiable Relationship Between:
 - Time Pressures
 - Degree of Information Integration in Automation
 - Resulting Decision Performance
- 2. Build a Generalized Model of Decision Support Automation.
- 3. Identify Information Support Needs of Human

EXPERIMENTAL DESIGN:

Replanning Protocol:

- View Preplanned Mission
- Change in Environment
 - Hazard, Time on Target, or Fuel Update
- Route Suggested with Varying Levels of Information Integration
- Subject Modifies Flight Plan Under Time Pressure
- Minimize Threat Exposure and Time on Target Deviation
- Meet Time on Target and Fuel Constraints

Sequence of Events

COST FUNCTION:

$$Cost_{Route} = Cost_{Hazard} + Cost_{ToT}$$

$$Cost_{Route} = A \left[\sum_{Colors} (Length_{RouteSegment} * Cost_{Color}) \right] + B \left[a_1 * \left(\exp \left(b_1 * \left| \frac{t}{t_0} \right| \right) - 1 \right) \right]$$

Fuel = Constraint

Dependent Variable:

INDEPENDENT VARIABLES:

Time Pressures (TBD):

INDEPENDENT VARIABLES:

Information Elements Integrated by Automation

- 1. No Automation, Manual Replan
 - Original Route Remains
- 2. Constraint Information Filtration Only
 - Route Modified to Optimize Time on Target Deviation & Satisfice Fuel Constraint
- 3. Threat Information Filtration Only
 - Route Modified to Avoid/Minimize Hazard Levels
- 4. Integration of Constraint + Threat Field Information
 - Route Minimizes Threat Exposure + Satifices Time on Target and Fuel Constraints

Optimize ToT,

Meet Fuel

Constraint

Minimize Threat Exposure

Satisfice Constraints + Minimize Threat Exposure

Experimental Test Matrix

		Information Automation			
Time Pressures		1	2	3	4
	а	•	3 by 4 Te	est Matrix	
	b	•	•	•	
	O		•	•	•

- Counterbalanced
- Scenarios of Similar Complexity
- Repeated-Measures Analysis of Variance

Status:

- In-Flight Replanner Software Developed
- Generating Scenarios for Pilot Experiment

Future:

- Run Data Collection w/ Subjects
- Refine Pilot Experiment for Formal Study

